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• Raul Tempone

• Yen-Hsi Richard Tsai

• Ewa Weinmüller

2



Venue
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• Hosting: providing lecture rooms and infrastructure

History

• The predecessor was founded in 1635.

• 1770-1780: the University was transferred to Buda and later to Pest.

• 1773: predecessor of the Mathematical Institute was founded.

Recent structure

• 9 faculties, over 33000 students

Famous professors in mathematics

• Lipót Fejér, Frigyes Riesz, Pál Turán, Alfréd Rényi, László Lovász

Famous students in mathematics

• György Pólya, John von Neumann, Paul Erdős, Endre Szemerédi
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FAST AND ACCURATE NUMERICAL SOLVERS FOR OSCILLATORY
ODES

Fruzsina Julia Agocs

Center for Computational Mathematics, Flatiron Institute, New York, USA
fagocs@flatironinstitute.org

Oscillatory systems are ubiquitous in physics: they arise in celestial and quantummechanics,
electrical circuits, molecular dynamics, and beyond. Yet even in the simplest case, when
the frequency of oscillations changes slowly but is large, the vast majority of numerical
methods struggle to solve such equations. Methods based on approximating the solution
with polynomials are forced to take O(k) timesteps, where k is the characteristic frequency
of oscillations. This scaling can generate unacceptable computational costs when the ODE
in question needs to be solved billions of times, e.g. as the forward modelling step of
Bayesian parameter estimation.
In this talk I will introduce a novel set of efficient methods for solving 2nd order, linear
ODEs with highly oscillatory solutions.
I will present (py)oscode [1, 2, 3], an open-source Python/C++ package that can auto-
matically switch between two different methods to advance the numerical solution with
depending on whether the solution is oscillatory or slowly varying. In regions of oscillation
it uses an asymptotic expansion (the Wentzel–Kramers–Brillouin approximation) suited for
oscillatory functions and can thus step over many oscillations in a single time-step, otherwi-
se switching to a Runge–Kutta method. This allows the number of timesteps (py)oscode
needs to take to be roughly O(1), independent of the frequency k. I will briefly summarise
the algorithm underlying (py)oscode and show examples of its applications, including fin-
ding the eigenvalues of a quantum system and the rapid computation of primordial power
spectra for exploring models of cosmic inflation. I will compare (py)oscode to existing nu-
merical methods for oscillatory systems and discuss its limitations. Finally, I will introduce
another (work-in-progress) numerical method built loosely on the ideas behind (py)oscode,
which was designed to be efficient even at extremely low tolerances approaching machine
precision.

References

[1] F. J. Agocs, W. J. Handley, A. N. Lasenby, and M. P. Hobson. Efficient method for
solving highly oscillatory ordinary differential equations with applications to physical
systems, Phys. Rev. Research, 2(1), 013030–013046, 2020.

[2] F. J. Agocs. (py)oscode: fast solutions of oscillatory ODEs, Journal of Open Source
Software, 5(56) 2830, 2020.

[3] F. J. Agocs, M. P. Hobson, W. J. Handley, and A. N. Lasenby. Dense output for highly
oscillatory numerical solutions. arXiv, 2007.05013, 2020.
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STABLE SIMULATION OF DEFORMABLE OBJECTS FOR COMPUTER
ANIMATION

Uri M. Ascher

Department of Computer Science, University of British Columbia, Vancouver, Canada
ascher@cs.ubc.ca

We examine a variety of numerical methods that arise when considering dynamical systems
in the context of physics-based simulations of deformable objects. Such problems arise in
various applications, including animation, robotics, control and fabrication. The goals and
merits of suitable numerical algorithms for these applications are different from those of
typical numerical analysis research in dynamical systems. Here the mathematical model is
not fixed a priori but must be adjusted as necessary to capture the desired behaviour, with
an emphasis on effectively producing lively animations of objects with complex geometries.
Results are often judged by how realistic they appear to observers as well as by the ef-
ficacy of the numerical procedures employed. Maintaining stability without over-damping
becomes a major challenge. We show that with an adjusted view numerical analysis and
applied mathematics can contribute significantly to the development of appropriate me-
thods and their analysis in a variety of areas including finite element methods, stiff and
highly oscillatory ODEs, model reduction, and constrained optimization. Please see [1].

References

[1] Uri M. Ascher, Egor Larionov, Seung Heon Sheen, and Dinesh K. Pai. Simulating
deformable objects for computer animation: a numerical perspective. J. Computational
Dynamics, 2021. DOI: 10.3934/jcd.2021021. (arXiv2013.01891).
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ADAPTIVE TIME PROPAGATION OF THE MCTDHF EQUATIONS

Winfried Auzinger

Institute of Analysis and Scientific Computing, TU Wien, Austria
winfried.auzinger@tuwien.ac.at

We compare exponential-type integrators for the numerical time-propagation of the equ-
ations of motion arising in the multiconfiguration time-dependent Hartree–Fock method
(MCTDHF) for solving the high-dimensional multi-particle Schrödinger equation.

We find that among the most widely used integrators like Runge–Kutta, exponential split-
ting, exponential Runge–Kutta, exponential multistep and Lawson methods, exponential
Lawson multistep methods with predictor/corrector step provide optimal stability and
accuracy at the least computational cost, taking into account that the evaluation of the
nonlocal potential terms is by far the computationally most expensive part of such a cal-
culation.

Moreover, the corrector step provides an estimator for the time-stepping error at no ad-
ditional cost, which enables adaptive time-stepping to reliably control the accuracy of a
computation.

References

[1] W. Auzinger, A. Grosz, H. Hofstätter, O. Koch. Adaptive Exponential Integrators for
MCTDHF, Lecture Notes in Computer Science 11958, 557–565, Springer, 2020.

[2] W. Auzinger, I. Březinová, A. Grosz, H. Hofstätter, O. Koch, T. Sato. Efficient adaptive
exponential time integrators for nonlinear Schrödinger equations with nonlocal potential,
J. Comput. Math. Data Sci. 1, 100014, 2021.
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SPLITTING INTEGRATORS FOR STOCHASTIC LIE–POISSON
SYSTEMS

David Cohen

Mathematical Sciences, Chalmers University of Technology and University of
Gothenburg, Gothenburg, Sweden
david.cohen@chalmers.se

We present explicit stochastic Poisson integrators, based on a splitting strategy, for a class
of stochastic Poisson systems driven by Stratonovich noise. We analyse their qualitative
and quantitative properties: preservation of Casimir functions as well as strong and weak
rates of convergence. Illustrations of these properties for stochastically perturbed Maxwell–
Bloch, rigid body and sine–Euler equations will be provided.

The presentation is based on a joint work with C-E. Bréhier and T. Jahnke.
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TIME-ACCURATE AND HIGHLY-STABLE EXPLICIT NUMERICAL
METHODS FOR DIFFERENTIAL PROBLEMS

Dajana Conte

Department of Mathematics, University of Salerno - Fisciano (Italy)
dajconte@unisa.it

This talk concerns the efficient and stable numerical solution of stiff initial value problems
of the type y

′(t) = f
(
t, y(t)

)
,

y(t0) = y0,
f : R× Rd → Rd, t ∈ [t0, T ], (1)

also arising in the semi-discretization in space of partial differential equations with advec-
tion or diffusion terms. We consider two-step s-stage explicit parallelizable peer methods
of the form [4]

Yn,i =
s∑
j=1

bijYn−1,j + h
s∑
j=1

aijf(tn−1,j, Yn−1,j),

Yn,i ≈ y(tn,i), tn,i = tn + hci, 1 ¬ 1 ¬ s,
(2)

where {tn = t0 + nh, n = 0, ..., N, tN = T} is a fixed uniform grid. The solution at the grid
points is computed by means of the last stage Yn,s, then selecting cs = 1.
To improve the stability of the considered methods (2), Jacobian dependent peer methods
have been introduced in [3]. We propose in this talk a further improvement by employing
a recently introduced numerical technique, which consists of multiplying the vector field f
of (1) by an operator, called Time-Accurate and Highly-Stable Explicit (TASE) operator
[1]. New TASE peer methods are obtained by applying peer methods (2) to the resulting
modified problem. It is shown that A-stable two-stage order-two and A(θ)-stable three-stage
order-three TASE peer methods can be obtained [2]. Finally, numerical tests confirming
the efficiency of the derived methods are carried out.
The presented research has been conducted in collaboration with Giovanni Pagano and
Beatrice Paternoster, from the Department of Mathematics of the University of Salerno.

References

[1] M. Calvo, J.I. Montijano, L. Randez. A note on the stability of time–accurate and
highly-stable explicit operators for stiff differential equations. J. Comput. Phys., 436,
110316, 2021.

[2] D. Conte, G. Pagano, B. Paternoster. Time-accurate and highly-stable explicit peer
methods for stiff differential problems. Submitted.

[3] D. Conte, G. Pagano, B. Paternoster. Two-step peer methods with equation-dependent
coefficients. Comput. Appl. Math., 41 (4), 140, 2022.

[4] R. Weiner, K. Biermann, B. Schmitt, H. Podhaisky. Explicit two-step peer methods.
Comput. Math. with Appl., 55, 609–619, 2008.
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LAWSON SCHEMES FOR STOCHASTIC DIFFERENTIAL EQUATIONS

Kristian Debrabanta, Anne Kværnøb, Nicky Cordua Mattssona

debrabant@imada.sdu.dk
aDepartment of Mathematics and Computer Science, University of Southern Denmark,

Odense, Denmark
bDepartment of Mathematical Sciences, Norwegian University of Science and Technology,

Trondheim, Norway

In this talk, we consider the application of stochastic Lawson schemes to the numerical of
stochastic differential equations (SDEs)

dX(t) =
M∑
m=0

(AmX(t) + gm(t,X(t))) ⋆ dWm(t), X(t0) = X0, (3)

whereWm form = 1, . . . ,M denote independent scalar Wiener processes,W0(t) = t denotes
the time, the SDE is solved on the interval I = [t0, T ] and we also assume that the matrices
Am ∈ Rd×d, m = 0, . . . ,M , are constant and are chosen in connection with gm such that
the following commutativity assumption holds:

[Al, Ak] = AlAk − AkAl = 0 for all l, k = 0, 1, . . . ,M.

We discuss inheritance of the convergence properties of the underlying Runge–Kutta scheme
and are especially interested in stochastic midpoint and trapezoidal Lawson schemes and
their ability to preserve quadratic invariants.
Details of the analysis can be found in [1, 2].

References

[1] K. Debrabant, A. Kværnø, and N. C. Mattsson. Runge–Kutta Lawson schemes for
stochastic differential equations. BIT Numer. Math., 61(2):381–409, 2021.

[2] K. Debrabant, A. Kværnø, and N. C. Mattsson. Lawson schemes for highly oscillatory
stochastic differential equations and conservation of invariants. BIT Numer. Math.,
2022.
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EXPONENTIAL INTEGRATORS FOR QUASILINEAR WAVE-TYPE
EQUATIONS

Benjamin Dörich, Marlis Hochbruck

Institute for Applied and Numerical Analysis, Karlsruhe Institute of Technology, Germany
benjamin.doerich@kit.edu

In this talk we propose two exponential integrators of first and second order applied to
quasilinear hyperbolic evolution equations. We work in an analytical framework which is
an extension of the classical Kato framework and covers quasilinear Maxwell’s equations in
full space and on a smooth domain as well as a class of quasilinear wave equations.
In contrast to earlier works, we do not assume regularity of the solution but only on the
data. From this we deduce a well-posedness result upon which we base our error analysis.
Turning to the space and full discretization of quasilinear problems, lower bounds on the
polynomial degree or severe CFL-type conditions have to be imposed in order to guarantee
well-posedness of the numerical method. We complement the talk indicating recent results
achieved in [2] towards the full discretization of quasilinear wave equations with improved
CFL conditions.

Acknowledgments Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 258734477 – SFB 1173.

References

[1] B. Dörich and M. Hochbruck. Exponential integrators for quasilinear wave-type equ-
ations. to appear in SIAM J. Numer. Anal., 2022. https://www.waves.kit.edu/
downloads/CRC1173_Preprint_2021-12.pdf.

[2] B. Dörich, J. Leibold, and B. Maier. Maximum norm error bounds for the full discretiza-
tion of non-autonomous wave equations. CRC 1173 Preprint 2021/47, Karlsruhe Institu-
te of Technology, 2021. https://www.waves.kit.edu/downloads/CRC1173_Preprint_
2021-47.pdf.
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SOME STABILITY RESULTS FOR EXPLICIT DYNAMICAL LOW-RANK
INTEGRATORS

Lukas Einkemmer

Department of Mathematics, University of Innsbruck, Austria
lukas.einkemmer@uibk.ac.at

When solving high-dimensional partial differential equations the number of degrees of fre-
edom scales very unfavorable with the dimensions. For a d dimensional problem and n grid
points in each direction we require nd degrees of freedom. This is often referred to as the
curse of dimensionality and for d > 3 is usually the most challenging aspect in designing
efficient numerical methods.
While there is a plethora of complexity reduction techniques that in some situations can
alleviate the curse of dimensionality, they usually rely on smoothness and thus do not work
reliably for hyperbolic problems. In recent years dynamical low-rank integrators have rece-
ived significant interest. Numerical simulation show that for many problems (ranging from
plasma physics [3] and radiative transfer to uncertainty quantification in fluid dynamics
[4]) this approach allows us to drastically reduce the number of degrees of freedom required
to obtain an accurate simulation.
However, while it is known that explicit time integrators in combination with a dynamical
low-rank approximation can result in reduced stability for hyperbolic problems, there are
few mathematical results available. This is due to the fact even a linear equation results in a
nonlinear set of equations once the dynamical low-rank approximation has been performed.
In this talk we will report on a recently conducted stability analysis for dynamical low-rank
algorithms in combination with explicit time integrators [1]. This allows us to explain the
CFL condition observed in numerical simulations and in particular emphasizes the good
behavior with regards to stability of the recently proposed unconventional integrator [2].

References

[1] Kusch, J., Einkemmer, L. and Ceruti, G., 2021. On the stability of robust dynamical
low-rank approximations for hyperbolic problems. arXiv:2107.07282.

[2] Ceruti, G. and Lubich, C., 2022. An unconventional robust integrator for dynamical
low-rank approximation, BIT Numer. Math., 62(1), pp.23-44.

[3] Einkemmer, L. and Lubich, C., 2018. A low-rank projector-splitting integrator for the
Vlasov–Poisson equation. SIAM J. Sci. Comput. 40(5), pp.B1330-B1360.

[4] Kusch, J., Ceruti, G., Einkemmer, L. and Frank, M., 2021. Dynamical low-rank appro-
ximation for Burgers’ equation with uncertainty. arXiv preprint arXiv:2105.04358.
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SOLVING ORDINARY DIFFERENTIAL EQUATIONS USING NEURAL
NETWORKS

Arpad Forberger

Gamax Laboratory Solutions Kft.
arpad.forberger@gamaxlabsol.com

Not all differential equations have a closed-form solution. To find approximate solutions
to these types of equations, many traditional numerical algorithms are available. However,
you can also solve an ODE by using a neural network. This approach comes with seve-
ral advantages, including that it provides differentiable approximate solutions in a closed
analytic form.
This includes a neural network containing the weights. Hence by construction the ini-
tial/boundary conditions are satisfied and the network is trained to satisfy the differential
equation. The useable range starts from ordinary differential equations (ODE) to systems
of coupled ODE and also to partial differential equations (PDE). In this presentation I
will illustrate the method by solving ODE problems and training an augmented neural
ordinary differential equation (ODE) network. A neural ODE is a deep learning operation
that returns the solution of an ODE. In particular, given an input, a neural ODE operation
outputs the numerical solution of the ODE. An augmented neural ODE operation impro-
ves upon a standard neural ODE by augmenting the input data with extra channels and
then discarding the augmentation after the neural ODE operation. Empirically, augmented
neural ODEs are more stable, generalize better, and have a lower computational cost than
neural ODE [1].
The example presented shows you how to:

• generate training data in the given range,

• define a neural network that takes x as input and returns the approximate solution
to the ODE,

• train the network with a custom loss function,

• compare the network predictions with the analytic solution.

References

[1] Lagaris, I. E., A. Likas, and D. I. Fotiadis. Artificial Neural Networks for Solving Or-
dinary and Partial Differential Equations., IEEE T. Neural Networ. 9, no. 5, 987-1000,
1998.
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HIGH ORDER STRONG-STABILITY-PRESERVING RUNGE–KUTTA
METHODS WITH DOWNWIND-BIASED OPERATORS

Yiannis Hadjimichaela, Sidafa Condeb, Edward G. Phillipsb

a Weierstrass Institute, Mohrenstraße 39, 10117 Berlin, Germany
b,c Sandia National Laboratories, P.O. Box 5800, MS 1320 Albuquerque, NM 87185-1320,

USA
yiannis.hadjimichael@wias-berlin.de

Strong stability preserving (SSP) time integrators have been developed to preserve certain
nonlinear stability properties (e.g., monotonicity, boundedness) of the numerical solution
in arbitrary norms, when coupled with suitable spatial discretizations. The existing general
linear methods (including Runge-Kutta and linear multistep methods) either attain small
time steps for strong stability preservation or are only first-order accurate. One way to
increase the time-step restrictions is to consider time integrators that contain both upwind-
and downwind-biased operators.
In this talk, we review SSP Runge-Kutta methods that use upwind- and downwind-biased
discretizations in the framework of perturbations of Runge-Kutta methods. We show how
downwinding improves the SSP properties of time-stepping methods and breaks some order
barriers. In particular, we focus on implicit downwind SSP Runge-Kutta methods that their
SSP coefficient can vary with respect to the method’s coefficients. We present a novel one-
parameter family of third-order, three-stage perturbed Runge-Kutta methods, for which
the CFL-like step-size restriction can be arbitrarily large. The stability of this family of
methods is analyzed, and we demonstrate that the desired order of accuracy is obtained
for large CFL numbers. Furthermore, we discuss the complexity of solving the nonlinear
problem that occurs at each step and we propose a block factorization that enhances the
solution of Newton’s method.
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ON SOME OSCILLATORY PROPERTIES OF FINITE DIFFERENCE
METHODS FOR ONE-DIMENSIONAL NONLINEAR PARABOLIC

PROBLEMS

Róbert Horváth

Budapest University of Technology and Economics and
MTA-ELTE Numerical Analysis and Large Networks Research Group, Budapest, Hungary

rhorvath@math.bme.hu

In this talk, we investigate two special qualitative properties of the finite difference solutions
of one-dimensional nonlinear parabolic initial boundary value problems. The first property
says that the number of the sign-changes of the solution function must be non-increasing in
time. The second property requires a similar property for the number of the local maximizers
and minimizers. First we recall and formulate some theorems that guarantee the above
properties for the solution of a special second order nonlinear parabolic problem. Then
we generate the numerical solution with the finite difference method and give sufficient
conditions for the mesh size and the time step that guarantee the discrete versions of the
properties. We also give some numerical test results.

Acknowledgments This research was supported by the Hungarian Scientific Research
Fund OTKA, No. K137699 and SNN125119.
The research reported in this talk and carried out at BME has been supported by the NRDI
Fund (TKP2020 NC, Grant No. BME-NC) based on the charter of bolster issued by the
NRDI Office under the auspices of the Ministry for Innovation and Technology.
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STRONG STABILITY AND POSITIVE INVARIANCE PRESERVATION
OF DIAGONALLY IMPLICIT TIME-STEPPINGS IN BANACH SPACES

Zoltán Horváth and Tihamér A. Kocsis

Department of Mathematics and Computational Sciences, Széchenyi István University,
Győr, Hungary

horvathz@math.sze.hu

In this paper, we shall present IE-cond, a brand new condition under which strong stability
preservation (SSP) will be proved for diagonally implicit time-stepping methods for initial
value problems in Banach spaces. The IE-cond condition is a statement on the SSP property
for the Implicit Euler method. This condition is in general much weaker than the state-of-
the-art EE-cond condition for the SSP-property with the Explicit Euler method, introduced
and thoroughly analyzed by Shu and Osher, S. Gottlieb, Spijker, Kraaijevanger, and many
authors. More precisely, EE-cond implies IE-cond, and IE-cond holds true and computable
for several problems of practical interest (e.g. non-lumped finite element discretization
and/or higher-order semi-discretization of parabolic and hyperbolic problems) for which
EE-cond does not hold.
In the paper, under the IE-cond, we prove SSP-theorems on diagonally implicit time-
steppings, based on the results on linear and non-linear resolvents, and methods of convex
analysis. Analog properties to the EE-cond-based classical theorems will be proved. In ad-
dition, optimal diagonally implicit Runge-Kutta methods will be computed up to order 4.
It is interesting that for order p = 4 there are significant differences between the IE-cond-
optimal and EE-cond-optimal schemes. Similar to the SSP-property, forward invariance
preservation of convex sets will be analyzed and theorems proved under the IE-cond for
positive invariance.
A new, efficient implementation procedure of the diagonally implicit methods will be derived
from the new theory.
To illustrate the new theoretical findings, we shall present the results of computational
experiments for finite element methods with FEniCS.

19



AN OVERVIEW ON SELF STARTING GENERAL LINEAR METHODS

Giuseppe Izzo

Department of Mathematics and Applications “R.Caccioppoli”,
University of Napoli Federico II, Italy

giuseppe.izzo@unina.it

We have recently focused our attention on using general linear methods (GLMs) as a
framework to analyze and generalize existing classes of numerical methods for ordinary
differential equations. In this work we present the class of Self Starting GLMs, whose
name point out one of their main features. Indeed, although they are multi-stage multi-
step methods, they do not require any additional starting procedure. In particular, after
presenting the general formulation, we focus on a subclass with a structure that is very
similar to Runge-Kutta methods. With this approach, we show how some properties of
these last methods can be improved, keeping similar computational costs. This analysis
indicates that the proposed methods may have better accuracy and stability properties,
such as, for example, larger stability regions in the case of explicit methods, or stage order
greater than one for singly diagonally implicit methods.
The possibility of identifying good families of methods with a larger number of degrees of
freedom can also have implications in the field of time discretization of partial differential
equations. For example, Self Starting GLMs allow the determination of new efficient and
highly stable Implicit-Explicit methods.
Finally, we report numerical experiments which confirm that Self Starting GLMs are com-
petitive with Runge-Kutta methods and can have better performance on nonstiff, mildly
stiff and stiff problems.

Part of this work is joint with Zdzislaw Jackiewicz, Arizona State University (USA), and
Sebastiano Boscarino, University of Catania (Italy).
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QUALITATIVE PROPERTIES FOR NONLINEAR PARABOLIC FINITE
ELEMENT PROBLEMS

János Karátson

Department of Applied Analysis, Eötvös Loránd University,
& Department of Analysis, Technical University; Hungary

kajkaat@caesar.elte.hu

For a given numerical method, besides its convergence, it is also important that the nu-
merical solution shall preserve the characteristic properties of the modeled phenomenon.
This ensures the qualitative reliability of the method. For diffusion type parabolic partial
differential equations (PDEs), the most relevant such properties are

• maximum/minimum principles,

• in particular, nonnegativity/nonpositivity preservation,

• maximum norm contractivity.

For instance, violation of nonnegativity would often mean that the obtained numerical
solution contradicts basic physical laws.
In this talk we summarize some qualitative results related to nonlinear parabolic operators
of the following form on a bounded spatial domain:

N [u] ≡ ∂u
∂t − div

(
K(x, t,∇u)

)
+ q(x, t, u) (4)

with proper nonlinear coefficients. First we deal with the continuous case (operator level),
then we study analogous properties for finite element discretizations. The preservation of
the qualitative properties can be generally guaranteed with angle conditions on the space
mesh (see [1] on the elliptic case) and additional relations of the space mesh and the time-
step. Discrete nonnegativity preservation and maximum principles will be summarized for
a class of parabolic problems. Furthermore, it is also important to reveal the relations of
the involved qualitative properties in an organized network. The results are mainly based
on [3, 4], which extend the properties of the linear case in [2].

Acknowledgments This work has been carried out in collaboration with István Faragó,
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The Cox-Ingersoll-Ross (CIR) process is described by an Itô-type stochastic differential
equation with a square-root diffusion and appears frequently in financial applications, for
example in the pricing of interest rate derivatives (see [1]):

dX(t) = κ (θ −X(t)) dt+ σ
√
X(t)dW (t), X(0) = X0 > 0, (5)

Solutions of (5) are almost surely (a.s.) non-negative; in fact when 2κθ > σ2, a parameter
constraint called Feller’s condition, they are known to be a.s. positive. For Monte Carlo
estimates, exact sampling from the conditional distribution is possible but computationally
inefficient, and potentially restrictive if the innovating Brownian motion is correlated with
that of another process.
The challenge for numerical methods is to control error in spite of the unbounded gradient
of the diffusion near zero, and to preserve the domain invariance of sampled trajectories. As
a consequence the numerical simulation of (5) is an active topic of research, and techniques
to handle the unbounded gradient of the diffusion coefficient near zero can be applied to
more general equations.
We propose a domain invariant numerical method for (5) applied over both deterministic
and adaptive random meshes and based upon a suitable transform followed by a splitting.
Moment bounds and theoretical strong L2 and L1 convergence rates of order 1/4 the scheme
are available in a restricted parameter regime. We then extend the new method to cover all
parameter values by introducing a soft zero region (where the deterministic flow determines
the approximation) resulting in a hybrid method that deals with the reflecting boundary.
From numerical simulations we observe an optimal convergence rate of 1 within the Feller
regime. As σ increases and we move outside of this parameter region, we observe that the
rates of strong convergence are competitive with other schemes in terms of convergence or-
der, however the proposed method with adaptive timestepping consistently displays smaller
error constants.

Acknowledgments This is joint work with Gabriel Lord, Radboud University, The Ne-
therlands.
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Many dispersive wave equations have a Hamiltonian structure, with important conserved
quantities of both linear and nonlinear type. The accuracy of over long times of numerical
discretizations. depends critically on the preservation of these invariants. I will present
a class of invariant-preserving discretizations based on summation-by-parts in space and
relaxation in time; these fully-discrete schemes conserve both linear and nonlinear invariants
and can be either implicit or explicit. These schemes have been developed for a wide range of
such equations, including Benjamin-Bona-Mahony (BBM), Fornberg-Whitham, Camassa-
Holm, Degasperis-Procesi, Holm-Hone, and the BBM-BBM system. I will show examples
demonstrating that the error for such schemes grows only linearly in time, whereas for
general schemes the error grows quadratically. I will also show examples of non-dispersive
hyperbolic systems where such invariant-preserving schemes lead to a similar (drastic)
improvement in long-time accuracy.
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In this talk we will discuss some interesting convergence results splitting methods for
parabolic problems with dynamic boundary conditions. A key property of these splitting
methods is that they separate the bulk and boundary dynamics.
The first (naive) bulk–surface splitting methods [KL17] have suffered from order reduc-
tion. Recently we proposed two completely different approaches [AKZ22] and [CFK22a] to
overcome this issue. In the talk, with the help of numerical experiments, we will discuss
and compare these methods and also give some details on their error analysis.
The talk is based on joint work with Robert Altmann and Christoph Zimmer (Augsburg),
and Petra Csomós (Rényi & ELTE) and Bálint Farkas (Wuppertal).
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SOME APPROXIMATION RESULTS FOR MILD SOLUTIONS OF
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We investigate the quality of space approximations of a class of stochastic integral equ-
ations of convolution type with Gaussian noise. Such equations arise, for example, when
considering mild solutions of stochastic fractional order partial differential equations but
also when considering mild solutions of classical stochastic partial differential equations.
The key requirement for the equations is a smoothing property of the deterministic evolu-
tion operator which is typical in parabolic type problems. We show that if one has access to
nonsmooth data estimates for the deterministic error operator together with its derivative
of a space discretization procedure, then one obtains error estimates in pathwise Hölder
norms with rates that can be read off the deterministic error rates.

This is a joint work with Erika Hausenblas (Montanuniversität Leoben) and Kistosil Fahim
(Institut Teknologi Sepuluh Nopember).
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through grant no. 131545.
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In this talk, we consider the Klein–Gordon equation
∂2

∂t2
ψ(x, t) = ∆ψ(x, t)−m(x, t)ψ(x, t), t > t0, x ∈ Td

ψ(x, t0) = ψ0(x), ∂tψ(x, t0) = ϕ0(x)
(6)

equipped with periodic initial and boundary conditions and time and space dependant co-
efficient m(x, t). The latter assumption was proposed only recently in [1] and allows for
dealing with the problems of negative probability density and of violation of Lorenz cova-
riance. Moreover application of time ans space dependant coefficients extends application
of (6) to the domain of quantum cosmology, [2], where m(x, t) may bring possibly highly
oscillatory form

m(x, t) =
∑
n

an(x, t)eiωnt (7)

with frequencies ωn ∈ R, n ∈ Z.
Numerical approximation of (6) with (7) requires various approaches when m(x, t) is non-
oscillatory, or highly oscillatory. The most challenging form of coefficient m(x, t), however,
is when it includes low and high frequencies, for example m(x, t) = a0(x, t) + a1(x, t)eit +
a2(x, t)ei10

6t.
In this talk we will present various approaches to all the kinds of these problems, will pre-
sent final error estimates and plenty of numerical examples.

Results of these investigations were obtained with Karolina Lademann (University of Gdansk)
and Katharina Schratz (Sorbonne Universite).
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In this talk, we discuss the numerical solution of a semilinear SDE with additive scalar
noise, on the form

dX(t) = AX(t)dt+ f(t,X(t))dt+ g(t)dW (t)

where A ∈ Rd×d is a constant matrix, and W (t) is a scalar Wiener process.
We will discuss how the order theory for exponential integrators derived in [1] can be
simplified and adjusted to the problem in question and present an mean square order 1.5
method based on these conditions.
The method has been applied to a semi-discretized diffusion-reaction PDE with bounday
noise, and some implementation issues will be discussed.
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In the integration of the linear ODE
y′(t) = Ay(t), t ­ 0,

y(0) = y0,

we consider the errors due to:

• a perturbation of the initial value y0;

• a perturbation of the matrix A;

• the use of a numerical method, i.e. the use of an approximant of the matrix exponen-
tial.

In the talk, we are interested to the relative errors rather than the absolute errors and we
show how these relative errors propagates along the time t. In particular, we are interest
to the their long-time behavior.
By looking to the relative errors, we explore an aspect of the numerical ODEs which is
little known and new and interesting results arise by this analysis. For example:

• in case of a perturbation of the initial value, unlike the absolute error, the relative
error of the perturbed solution does not diverge or decay to zero depending on the
real part of the rightmost eigenvalue of A, but it remains bounded and away from
zero;

• the relative error of the numerical method grows linearly in time.

References

[1] S. Maset. Conditioning and relative error propagation in linear autonomous ordinary
differential equations, Discrete Cont. Dyn-B, 23(7), 2879–2909, 2018.

[2] A. Farooq and S. Maset. How perturbations in the matrix of linear systems of ordinary
differential equations propagates along solutions, J. Comput. and Appl. Math., 4007,
114046, 2022.

[3] S. Maset. Relative error analysis of matrix exponential approximations for numerical
integrations, J. Numer. Math., 29(2), 119-158, 2021.

29



NUMERICAL INTEGRATION OF NLS:
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Standard numerical integrators such as splitting methods or exponential integrators suffer
from order reduction when applied to semi-linear dispersive problems with non-smooth
initial data. In this talk, we focus on the cubic nonlinear Schrödinger equation with periodic
boundary conditions. For such problems, we present and analyze (filtered) integrators that
exhibit superior convergence rates at low regularity. Numerical examples illustrating the
analytic results will be given.

This is joint work with Frédéric Rousset (Paris-Sud) and Katharina Schratz (Sorbonne,
Paris).
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ADAPTIVE LINEAR MULTISTEP METHODS: DESIGNING
AUTOMATIC STEP SIZE CONTROL FOR MULTISTEP METHODS

Gustaf Söderlind
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In a k-step adaptive linear multistep methods the coefficients depend on the k-1 most re-
cent step size ratios. In a similar way, both the actual and the estimated local error will
depend on these step ratios. The classical error model has been the asymptotic model,
r = chp+1y(p+1)(t), based on a constant step size analysis, where all past step sizes simul-
taneously go to zero. This does not reflect actual computations with multistep methods,
where step size control only affects future steps, not the the previous accepted steps. In va-
riable step size implementations, therefore, even in the asymptotic regime, the error model
must include the dependence on previous step sizes and step ratios. In this talk we develop
dynamic asymptotic models for variable step size computations, and analyze a new step
size controller accounting for the dynamics in the error model, while keeping the local error
near a prescribed tolerance.
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We will first recall the use of Monte Carlo and Multi-level Monte Carlo (MLMC) methods.
Then we will discuss our goal-oriented Multilevel Monte Carlo (AMLMC) algorithms for (i)
Partial Differential Equations with random inputs, (ii) Ito Stochastic Differential Equations,
and (iii) Stochastic Reaction Networks modeled by Pure Jump Markov Processes. In this
context, adaptivity includes several aspects such as mesh refinements based on either a
priori or a posteriori error estimates, the local choice of different time-stepping methods, and
the selection of the total number of levels and the number of samples at different levels. Our
AMLMC estimator uses a hierarchy of adaptively refined, non-uniform discretizations. In
particular, we show that our AMLMC algorithms are asymptotically accurate and have the
correct complexity using the pointwise convergence of an appropriate error density. We even
offer improved control of the multiplicative constant factor in the asymptotic analysis. We
then recall our Continuation MLMC algorithm for estimating parameters needed in MLMC,
such as the variance of the difference between consecutive approximations. CMLMC takes
particular care of the deepest levels, where only a few realizations are available to produce
essential estimates for efficiency reasons. Moreover, we show the asymptotic normality of the
statistical error in the MLMC estimator, justifying an error estimate that allows prescribing
both the required accuracy and confidence level in the final result. We present several
examples to illustrate the above results and the corresponding computational savings.
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We propose a machine learning approach for time-parallel computations of Hamiltonian
systems. We will demonstrate the approach by computing wave propagation in media with
multiscale wave speeds, using a second-order linear wave equation model as a proof-of-
concept. We advocate the use of online- and offline data for enhancing the parareal algori-
thm of Lions, Maday, and Turinici [1], and demonstrate that the coupled approach improves
the stability of parareal algorithms for wave propagation and improves the accuracy of the
enhanced coarse solvers [2, 3]. The central focuses are the formulation of an optimization
problem and the generation of suitable training data, in other words, the sampling of the
appropriate function space. We discuss the regime in which similar machine learning ap-
proaches may have computational advantages given appropriate optimization models and
data.
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We deal with boundary value problems for systems of ordinary differential equations with
singularities. Typically, such problems have the form

z′(t) = F (t, z(t)), t ∈ (0, 1], B0z(0) +B1z(1) = β,

where limt→0 F (t, z(t)) =∞ and limt→0 ∂F (t, z)/∂z =∞. The analysis is usually done for
the model equation

z′(t) =
1
tα
Mz(t) + f(t, z(t)), t ∈ (0, 1], B0z(0) +B1z(1) = β,

where f(t, z) may also be in the form of g(t, z)/t with a smooth function g(t, z). For α = 1
the problem has a singularity of the first kind, while for α > 1 the singularity is common-
ly referred to as essential singularity. We briefly recapitulate the analytical properties of
the above problems with a special focus on the most general boundary conditions which
guarantee their well-posedness.
To compute the numerical approximation for z we use polynomial collocation, because the
method retains its hight order even in case of singularities. The usual high-order superco-
nvergence at the mesh points does not hold in general. However, the uniform superconver-
gence is preserved (up to logarithmic factors). We will discuss how the collocation performs
for problems with the inhomogeneity of the form g(t, z)/t.
The updated version of theMatlab code bvpsuite1.1 with the special focus on the above
problem class has been implemented. For higher efficiency, estimate of the global error and
adaptive mesh selection are provided. The code can be applied to arbitrary order problems
in implicit form. Also systems of index 1 differential-algebraic equations (DAEs) are in the
scope of the code. We illustrate the performance of the software with a special focus on
parameter-dependent problems by means of numerical simulation of models in applications.
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